REPLACING MLE WITH BAYESIAN SHRINKAGE CAS ANNUAL MEETING NOVEMBER 2018

GARY G.VENTER

ESTIMATION

- Problems with MLE known since Charles Stein 1956 paper
- He showed that when estimating 3 or more means, shrinking them all towards the grand mean reduces predictive variance
- James-Stein estimator same as Bühlmann's 1968 method ratio of within and between variances determines degree of shrinkage
- Only difference is Stein assumed normal distribution MLE, Bühlmann assumed least squares – really the same thing

SOMETHING SIMILAR FOR REGRESSION

- Hoerl and Kennard 1970 paper minimized NLL plus selected λ times sum of squared parameters, excluding the constant term
- Produces shrinkage towards mean for fitted values, since they first standardize all variables to make them mean zero, variance one
- All fitted values are grand mean (= constant) + terms with mean zero
- Showed that there is always some value of λ that produces error variance less than that from MLE but didn't have a good way to find it
- Application of a general method called regularization used for estimating difficult models, so sometimes is called regularization

NEXT

- That is called ridge regression based on their derivation
- Then in 1990s lasso minimized NLL + λ *sum of absolute values
- Modelers like that because some parameters go to exactly zero, so it is variable selection as well as error reduction
- Cross-validation used as way to select λ
- Divide sample into groups, estimate by leaving out a group, get NLL for omitted group, repeat for all groups. Find best λ .

ENTER BAYESIAN SHRINKAGE

- Giving priors mean & mode of 0 shrinks parameters towards 0
- Normal prior gives ridge regression as posterior mode
- Double-exponential = Laplace prior does this for lasso
- Has an extreme form of cross-validation, leave one out (loo), which makes every sample value an omitted group
- Loo=NLL of the omitted points a good estimate of the NLL of a completely new sample – so is adjusted NLL like AIC, BIC, etc
- Can be computed very efficiently from the posterior estimates

IT'S NOTYOUR GRANDFATHER'S BAYESIAN ANALYSIS

- Simulation method for posterior (MCMC) does not need specification of the form of the posterior – just likelihood and priors. Good software available – Stan.
- Bayesian estimation not connected to beliefs priors are part of the model and evaluated results they give
- Might change the priors after you see the posteriors
- Also can put prior on λ to get posterior estimate of it

BAYESIAN SHRINKAGE REPLACES MLE AND LASSO, RIDGE REGRESSION TOO

- Reduces estimation and prediction variances over MLE
 - Also MCMC gives parameter distributions which lasso doesn't have
- MCMC usually fairly robust as to selection of priors
- \blacksquare Loo allows choice of λ as well as goodness of fit test; lasso lacking it
- Putting prior on λ usually similar to optimizing loo, and often having posterior for λ does slightly better than any one λ . So just run once.
- Good case that posterior mean better than mode that lasso gives
 - Mode can be overly responsive to features of the given sample

DIRECTLY APPLIES TO REGRESSIONS AND GLM USED FOR CLASS RATEMAKING

- Bayesian shrinkage better than MLE for any multivariate estimation
- Easiest for models with a vector of observations and a design matrix
- Shrinks parameters, maybe some to zero, eliminating some variables
- Can start with lot of variables and this chooses the best combination
- I tried it on data from Fu-Wu paper, Variance 01-02.
- Has loss severity by age and use, with claim count as volume measure
- Fitted multiplicative model with parameter for each age, use, log link

STAN KEPT ALL AGE VARIABLES BUT COMBINED SHORT DRIVE TO WORK AND PLEASURE USE CLASSES. GRAPH ACTUALVS. FITTED

USE IN HIERARCHICAL MODELS

- Generally considered to be models with data at various "levels" interpreted broadly
- E.g., levels could be by state, then county within state then municipality within county, with an additional variable of sourcing agent, or other things distance to fire station, ...
- A lot of states could start with expected zero difference from countrywide, then many counties with zero difference from state, similar for municipalities, and sourcing agent
- Could do the same with interaction terms between variables a lot shrink away, some not
- Could have age group classes, then individual ages, but with many of those shrinking to the group average, etc. – can help to define age groups as well
- But levels could be layers of modeling assumptions too make prior for λ , which is prior for β
- Also MCMC allows non-linear models could have additive plus multiplicative model

USING ON LOSS TRIANGLES – ADDITIVE OR MULTIPLICATIVE MODELS

- Need all row, column factors so don't want to eliminate them
- One approach based on Barnett, Zehnwirth's 2000 CAS paper:
 - Fit piecewise linear curves to parameters in each direction, shrink slope changes of curves. Now can do it with Bayesian shrinkage
- Şahin & I do this for Bayesian shrinkage in mortality triangle model in 2018 Astin paper (like reserving but bigger triangles)
- Gao, Meng 2018 Astin paper similar for reserve model, but fits cubic splines instead of piecewise linear curves

DETAILS OF THIS FITTING

- Want to put in regression form, so string out the rectangle into a column, keeping track of row and column for each cell
- Regression would make a (0,1) dummy variable for each row, column, and diagonal, taking value = 1 at cells they affect, so coefficient * dummy gets to cells for right rows and columns
- Slope changes are 2nd differences of parameters and add up to the parameters – just need more complicated dummies
- The dummy for row u in a cell from row j takes value:
 - Max(0, 1+j-u). Same for columns, diagonals numbered from 1

MODEL USING ROW, COLUMN, DIAGONAL PARAMETERS

- Mean for log of data with row, column, and diagonal parameters p_w , q_u , and r_{u+w} :
- $\mu_{w,u} = c + p_w + q_u + r_{u+w}$ usually with a log link
- Used $e^{\mu_{w,u}}$ as the $a_{w,u}$ parameter of a gamma distribution with mean = $a_{w,u}b$ and $Var = a_{w,u}b^2$, with b constant across cells. Variance = b*mean, like in ODP (can't do this in GLM)
- Exponentiation of p_w , q_u gives the row and column factors
- Y = X β is the fitted $\mu_{w,u}$ vector.
- Same thing works when dummy variable is a slope change dummy max(0, 1+j-u).
- Still e^Y is the vector of gamma a_{w,u} parameters
- With shrinkage, resulting row, column, diagonal factors are on piecewise linear curves

EXAMPLES

- Two I0x9 paid loss ratio triangles for US commercial auto
- Fit row-column (accident year, lag) and column-diagonal (lag, payment year) models first, then tried all 3 directions
- Took out any variables with parameters near zero with wide estimation ranges if doing so did not hurt loo penalized loglikelihood measure
- For State Farm, AY-lag model fit best by loo, for USAA lag-PY best
- Each model had two variables eliminated so just continues existing piece-wise linear slope at those points
- Adding third direction didn't help either model

ADDITIVE ADJUSTMENT

- Muller's 2016 Variance paper suggested adding a factor for each column, which is multiplied by exposure by row and then added to the row*column mean
- Like adding in a Cape Cod model. The factor model $a_{w,u} = A_w B_u C_{w,u}$ goes to
- $a_{w,u} = A_w B_u C_{w,u} + D_u E_w$, with exposure E_w by AY, and lag factors D_u
- Again use 2nd difference dummies for the logs of the new factors
- Since triangle already divided by premium, made that the exposure and $E_w = 1$.
- This improved loo for both triangles, but for USAA none of the original lag parameters was then significant so became a purely additive model $a_{w,u} = C_{w,u} + D_u$

STATE FARM FACTORS, 2 MODELS

Exposure term makes each fitted value a linear model of the row factors, not just a multiple. Picked up acceleration of payments in more recent years.

WHICH SHRINKAGE PRIORS?

- Used double-exponential prior on all the 2nd difference parameters like lasso
- But Student's-t with one dof, called Cauchy distribution, becoming popular too
- Heavier tailed but also stronger push towards zero most parameters shrink more but some could be a lot bigger
- Tends to produce more parsimonious models but can have better fits by loo
- Tried this for USAA model before exposure adjustment fit slightly worse but more parsimonious according to loo parameter penalty
- If process generating data is subject to change, this could be a better model
- Student's-t with two dof tried in other models, and seems to work very well
- Double exponential very similar to t with 6 dof matches all 5 moments of that t

CAUCHYVS. DOUBLE EXPONENTIAL

CONCLUSIONS

- Bayesian shrinkage has lower predictive variance than MLE can use instead of MLE to get better predictions in almost all models
- Recent advances include goodness of fit measure; direct fitting without a lot of shrinkage choices; no need to specify posteriors – so as easy as MLE
- Good R packages available
- Fitting process like for MLE try models, compare fits
- Flexible choice of distributions and model forms like additive-multiplicative
- Fit curves to factors using 2nd differences for row-column models

REFERENCES

- Stein, Charles. 1956. "Inadmissibility of the Usual Estimator of the Mean of a Multivariate Normal Distribution." Proceedings of the Third Berkeley Symposium 1: 197–206.
- Hoerl, A.E., and R. Kennard. 1970. "Ridge Regression: Biased Estimation for Nonorthogonal Problems." Technometrics 12: 55–67.
- Greenberg, B. G., John J. Wright, and Cecil G. Sheps. 1950. "A Technique for Analyzing Some Factors Affecting the Incidence of Syphilis." Journal of the American Statistical Association 45:251, pp 373–99.
- Barnett, Glen, and Ben Zehnwirth. 2000. "Best Estimates for Reserves." Proceedings of the Casualty Actuarial Society 87: 245–303.
- Venter, Gary, and Şule Şahin. 2018. "Parsimonious Parameterization of Age-Period-Cohort Models by Bayesian Shrinkage." Astin Bulletin 48:1:89–110.
- Gao, Guangyuan, and S. Meng. 2018. "Stochastic Claims Reserving via a Bayesian Spline Model with Random Loss Ratio Effects." Astin Bulletin 48:1: 55–88.
- Muller, Thomas. 2016. "Projection for Claims Triangles by Affine Age-to-Age Development." Variance 10:1:121–44.