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ESTIMATION

¡ Problems with MLE known since Charles Stein 1956 paper

¡ He showed that when estimating 3 or more means, shrinking 
them all towards the grand mean reduces predictive variance

¡ James-Stein estimator same as Bühlmann’s 1968 method – ratio of 
within and between variances determines degree of shrinkage

¡ Only difference is Stein assumed normal distribution MLE, 
Bühlmann assumed least squares – really the same thing



SOMETHING SIMILAR FOR REGRESSION
¡ Hoerl and Kennard 1970 paper minimized NLL plus selected l times sum 

of squared parameters, excluding the constant term

¡ Produces shrinkage towards mean for fitted values, since they first 
standardize all variables to make them mean zero, variance one

¡ All fitted values are grand mean (= constant) + terms with mean zero

¡ Showed that there is always some value of l that produces error variance 
less than that from MLE – but didn’t have a good way to find it

¡ Application of a general method called regularization used for estimating 
difficult models, so sometimes is called regularization



NEXT

¡ That is called ridge regression based on their derivation

¡ Then in 1990s lasso minimized NLL + l*sum of absolute values

¡ Modelers like that because some parameters go to exactly zero, 
so it is variable selection as well as error reduction

¡ Cross-validation used as way to select l

¡ Divide sample into groups, estimate by leaving out a group, get 
NLL for omitted group, repeat for all groups. Find best l.



ENTER BAYESIAN SHRINKAGE

¡ Giving priors mean & mode of 0 shrinks parameters towards 0
¡ Normal prior gives ridge regression as posterior mode
¡ Double-exponential = Laplace prior does this for lasso

¡ Has an extreme form of cross-validation, leave one out (loo), 
which makes every sample value an omitted group

¡ Loo=NLL of the omitted points – a good estimate of the NLL of 
a completely new sample – so is adjusted NLL like AIC, BIC, etc

¡ Can be computed very efficiently from the posterior estimates



IT’S NOT YOUR GRANDFATHER’S BAYESIAN ANALYSIS

¡ Simulation method for posterior (MCMC) does not 
need specification of the form of the posterior – just 
likelihood and priors. Good software available – Stan.

¡Bayesian estimation not connected to beliefs – priors 
are part of the model and evaluated results they give

¡Might change the priors after you see the posteriors

¡Also can put prior on l to get posterior estimate of it



BAYESIAN SHRINKAGE REPLACES MLE AND 
LASSO, RIDGE REGRESSION TOO

¡ Reduces estimation and prediction variances over MLE
¡ Also MCMC gives parameter distributions which lasso doesn’t have

¡ MCMC usually fairly robust as to selection of priors

¡ Loo allows choice of l as well as goodness of fit test; lasso lacking it 

¡ Putting prior on l usually similar to optimizing loo, and often having 
posterior for l does slightly better than any one l. So just run once.

¡ Good case that posterior mean better than mode that lasso gives
¡ Mode can be overly responsive to features of the given sample



DIRECTLY APPLIES TO REGRESSIONS AND GLM USED FOR CLASS 
RATEMAKING

¡ Bayesian shrinkage better than MLE for any multivariate estimation

¡ Easiest for models with a vector of observations and a design matrix

¡ Shrinks parameters, maybe some to zero, eliminating some variables

¡ Can start with lot of variables and this chooses the best combination

¡ I tried it on data from Fu-Wu paper,  Variance 01-02. 

¡ Has loss severity by age and use, with claim count as volume measure

¡ Fitted multiplicative model with parameter for each age, use, log link



STAN KEPT ALL AGE  VARIABLES BUT COMBINED SHORT DRIVE TO 
WORK AND PLEASURE USE CLASSES. GRAPH  ACTUAL VS. FITTED

8 age groups
Business use, long 
drive to work, all 
other are fitted use 
groups

Smoothness of 
fitted values here 
optimized loo 
penalized NLL



USE IN HIERARCHICAL MODELS

¡ Generally considered to be models with data at various ”levels” – interpreted broadly

¡ E.g., levels could be by state, then county within state then municipality within county, with an 
additional variable of sourcing agent, or other things – distance to fire station, …

¡ A lot of states could start with expected zero difference from countrywide, then many 
counties with zero difference from state, similar for municipalities, and sourcing agent

¡ Could do the same with interaction terms between variables – a lot shrink away, some not

¡ Could have age group classes, then individual ages, but with many of those shrinking to the 
group average, etc. – can help to define age groups as well

¡ But levels could be layers of modeling assumptions too – make prior for l, which is prior for b

¡ Also MCMC allows non-linear models – could have additive plus multiplicative model



USING ON LOSS TRIANGLES –
ADDITIVE OR MULTIPLICATIVE MODELS

¡ Need all row, column factors so don’t want to eliminate them

¡ One approach based on Barnett, Zehnwirth’s 2000 CAS paper:
¡ Fit piecewise linear curves to parameters in each direction, shrink slope 

changes of curves. Now can do it with Bayesian shrinkage

¡ Șahin & I do this for Bayesian shrinkage in mortality triangle model 
in 2018 Astin paper (like reserving but bigger triangles)

¡ Gao, Meng 2018 Astin paper similar for reserve model, but fits 
cubic splines instead of piecewise linear curves



DETAILS  OF  THIS  FITTING

¡ Want to put in regression form, so string out the rectangle into a 
column, keeping track of row and column for each cell 

¡ Regression would make a (0,1) dummy variable for each row, 
column, and diagonal, taking value = 1 at cells they affect, so 
coefficient * dummy gets to cells for right rows and columns

¡ Slope changes are 2nd differences of parameters and add up to 
the parameters – just need more complicated dummies

¡ The dummy for row u in a cell from row j takes value:
¡ Max(0, 1+j-u). Same for columns, diagonals - numbered from 1



MODEL USING ROW, COLUMN, DIAGONAL PARAMETERS

¡ Mean for log of data with row, column, and diagonal parameters pw , qu , and ru+w :
¡ !",$ = & + (" + )$ + *$+" – usually with a log link
¡ Used ,-.,/ as the aw,u parameter of a gamma distribution with mean = aw,ub and 

Var = aw,ub2, with b constant across cells. Variance = b*mean, like in ODP (can’t do 
this in GLM)

¡ Exponentiation of (", )$ gives the row and column factors
¡ Y = Xb is the fitted !",$ vector.
¡ Same thing works when dummy variable is a slope change dummy max(0, 1+j-u).
¡ Still eY is the vector of gamma aw,u parameters
¡ With shrinkage, resulting row, column, diagonal factors are on piecewise linear 

curves



EXAMPLES

¡ Two 10x9 paid loss ratio triangles for US commercial auto

¡ Fit row-column (accident year, lag) and column-diagonal (lag, payment 
year) models first, then tried all 3 directions

¡ Took out any variables with parameters near zero with wide estimation 
ranges if doing so did not hurt loo penalized loglikelihood measure

¡ For State Farm,  AY-lag model fit best by loo, for USAA lag-PY best

¡ Each model had two variables eliminated – so just continues existing 
piece-wise linear slope at those points

¡ Adding third direction didn’t help either model



ADDITIVE ADJUSTMENT

¡ Muller’s 2016 Variance paper suggested adding a factor for each column, which 
is multiplied by exposure by row and then added to the row*column mean

¡ Like adding in a Cape Cod model. The factor model aw,u = AwBuCw,u goes to

¡ aw,u = AwBuCw,u + DuEw , with exposure Ew by AY, and lag factors Du 

¡ Again use 2nd difference dummies for the logs of the new factors

¡ Since triangle already divided by premium, made that the exposure and Ew= 1.

¡ This improved loo for both triangles, but for USAA none of the original lag 
parameters was then significant so became a purely additive model             
aw,u = Cw,u + Du



STATE FARM FACTORS, 2 MODELS

Exposure term makes each fitted value a linear model of the 
row factors, not just a multiple. Picked up acceleration of 
payments in more recent years.



WHICH SHRINKAGE PRIORS?

¡ Used double-exponential prior on all the 2nd difference parameters – like lasso

¡ But Student’s-t with one dof, called Cauchy distribution, becoming popular too

¡ Heavier tailed but also stronger push towards zero – most parameters shrink more 
but some could be a lot bigger

¡ Tends to produce more parsimonious models but can have better fits by loo

¡ Tried this for USAA model before exposure adjustment – fit slightly worse but more 
parsimonious according to loo parameter penalty

¡ If process generating data is subject to change, this could be a better model 

¡ Student’s-t with two dof tried in other models, and seems to work very well

¡ Double exponential very similar to t with 6 dof – matches all 5 moments of that t



CAUCHY VS. DOUBLE EXPONENTIAL



CONCLUSIONS

¡ Bayesian shrinkage has lower predictive variance than MLE – can use 
instead of MLE to get better predictions in almost all models

¡ Recent advances include goodness of fit measure; direct fitting without a 
lot of shrinkage choices; no need to specify posteriors – so as easy as MLE

¡ Good R packages available

¡ Fitting process like for MLE – try models, compare fits

¡ Flexible choice of distributions and model forms like additive-multiplicative

¡ Fit curves to factors using 2nd differences for row-column models
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